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APU Overview

• Meet customer requirements, but also add new 
features
– Pre-heat and Pre-cool
– Engine-off electrical accessories
– Remote and emergency power

• Peak power of 4-5 kWe for LDV
• Could reduce peripherals fuel consumption by 

50 %
• Largest benefit for applications with high idle 

times  
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Key APU RequirementsKey APU Requirements

• Common fuel, small, lightweight

• High system efficiency, low emissions

• Start-up in less than 3 minutes

• Maintenance, durability, cost consistent with 
application (commercial, RV, luxury, first 
applications?)

• Noise
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SOFC APU Sizing

Typical vehicle APU application:

Maximum power = 5000 We (100 %)
Average power   = 1500 We  (30 %)
Minimum power  =   500 We  (10 %)
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Transient Response
Different time constants - fast to slow:

• Electrochemistry – instantaneous (sufficiently fast 
to assume quasi-stationary behavior)

• Stack electrical response – fraction of a second

• Thermal-hydraulic response – seconds (e.g., POX) 
to minutes (e.g., SMR)

• Load response with some energy storage - 1 sec 

• Start up time - 10 sec to 3 min

• PES electrical response - msec



PERC/UICCFC/BT/GTRI EMI/VT

OBJECTIVES (Phases I and II)
• Develop fully transient 
nonlinear, unified models for 
SOFC planar configurations, 
different PESs, and a variety of 
BOPS components

•Develop a prototypical software 
package (Phase II) for industry to 
understand the dynamics of 
SOFC stack, power electronics, 
and system interactions

• Implement models in the 
SaberDesigner and gProms 
dynamic simulation and 
optimization environments

• Demonstrate the feasibility of 
integrating these models into an 
overall systems-analysis and 
optimization tool (Phase I)

•Conduct parametric studies 
(Phase I) and optimizations 
(Phase II) to determine control 
strategies and their effects on  
cell reliability, efficiency, and 
power density; as well as system 
response and configuration, and 
component designs.
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Technical Issues: PES

• To investigate the impact of critical parameters of a closed-
loop PES, which can negatively affect the performance and 
integrity of a SOFC stack for a given application load {Phase I 
(set cases); Phase II (experimental verifications of Phase-I 
results and extension to generalized analysis)}

– Circuit and control parameters of the power converters
– Topological architectures (standalone, cascaded, or distributed).
– Switching schemes (that is, whether the converters are operated with 

PWM, soft switching, interleaving etc.)
– Application load (converter and stationary/non-stationary loads)

PERC/UIC
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Impact of Parametric Variations on Ripple: 
An “Illustration” for a DC-DC Converter

By simply varying 
“only one” parameter 
(load in this case), the 
voltage and current 
ripples of the 
converter change 
drastically. In reality, 
more than one 
parameter can vary 
simultaneously.
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VR: Voltage ripple
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Technical Issues: PES

• To investigate the steady-state and dynamic interaction 
problems due to the integration of the SOFCSS and PES for a 
given application load {Phase I (set cases); Phase II 
(experimental verifications of Phase-I results and extension to 
generalized analysis)}

– Fast- and slow-scale scale instabilities in ripple dynamics
– Impact of variations in SOFC output voltage on PES
– Effect of time-varying perturbations of the stationary/non-stationary 

loads and PES on the SOFC
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Technical Issues: PES

• To determine the criteria for the synthesis of an optimal 
power-electronic converter (for a given SOFC), which 
can increase the lifetime and efficiency of the fuel cell 
{Phase II (robust)}

– What type of converter topology should one choose, for a given 
application load, so that the performance and efficiency of the 
SOFC can be maximized? (A SOFC can be interfaced to an 
application load using multiple converter topologies. The 
severity of the interactions among the subsystems is not the 
same for all the topologies.)

– How should one optimize an existing power-electronics system 
so that it has minimal negative effect on the SOFC?
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R&D Approach: PES

• Unified Model of PES
• Power-electronic systems are “hybrid systems”; they comprise discontinuous    

differential equations, discrete differential equations, functional differential
inclusions, digital automata, impulsive differential equations, non-smooth    
differential equations, ordinary and even partial differential equations

• Unified framework is an indexed collection of dynamical systems along                  
with a map for transitions among them that can account for “any” dynamical 
model of a PES and predict fast- and slow-scale  ripple dynamics

Conventional Averaged Models of PES cannot account for all ripple 
dynamics and in many cases predict incorrect stability results.
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R&D Approach: PES

System Interaction using 
“Bifurcation” Analyses

When does a 
nominal system  
loose stability?

What is the 
mechanism of 
the instability?

What happens 
after the 

instability 
(post-instability 

dynamics)?
For variations in one or 
more parameters, when 

can one expect the ripple 
magnitude and frequency 

of the PES to change?

How conservative should 
the PES design be?

• Are the “new” voltage 
and current ripples 

dangerously high for the 
SOFC?
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Previous Successes: SOFCSS - Modeling TSOFC 
Transients with Lagrangian Approach

• At “t*=0+” the  load 
increases and current 
initially “spikes” up

• The reactants supply, 
however, does not 
change

• A new steady state is 
reached wherein the 
hydrogen profile is 
decreased along the 
anode due to reactant 
depletion
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• Reactants’ inlet flow 
properties are the same

• The fuel elements’ exit 
properties depend upon 
their locations at t*=0+

• Steady state is regained 
when element 3 exits 
(t*=1), because every 
successive element will 
then pass along the cell 
“seeing” only the new 
operating potential

Fuel Cell

1234

Fuel Stream

Oxidant Stream

t = 0+

Previous Successes: SOFCSS - Modeling TSOFC 
Transients with Lagrangian Approach
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Previous Successes: SOFCSS - Modeling 
TSOFC Transients with Lagrangian Approach

� ηelement(t+∆t) =
ηfield(x+∆x, t +∆t)

Element properties Element properties 
were calculated by were calculated by 
using the proven steady using the proven steady 
state model on an state model on an 
instantinstant--byby--instant basis instant basis 
until a new electrical until a new electrical 
steady state was steady state was 
reachedreached
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• Current spikes up, yet the 
fuel supply remains 
invariant due to the 
decoupling of the cell

• Fuel utilization thus 
increases; this causes 
current (and power) to 
decrease from t*=0+ 

values, until a new 
steady state “match” 
occurs at the new voltage 
(t*=1)

Previous Successes: SOFCSS - Modeling 
TSOFC Transients with Lagrangian Approach
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R&D Approach: SOFCSS
- Need Enhancements to Transient Model

Resolution of operating environment via model(s)
Extensive communication with SECA teammates 

regarding cell sensitivity issues (e.g., 
“electrochemical fatigue” parameters??)

• Dynamic response to current ripple
Superposition applied to original Lagrangian

approach wherein multiple, periodic stimuli (as 
opposed to initial stimulus) serve as the 
“forcing function”

• Cell reliability under load variation
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Previous Work Modeling the SOFCSS/BOPSPrevious Work Modeling the SOFCSS/BOPS

PEMFC based PEMFC based 
TES modelTES model

SOFC Stack SOFC Stack 
modelmodel

SOFC Stack Subsystem SOFC Stack Subsystem 
(SOFCSS) transient & (SOFCSS) transient & 

steady state modelssteady state models

SOFC System SOFC System 
(SOFCSS + BOPS) (SOFCSS + BOPS) 
steady state modelsteady state model
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Previous Work: System (SOFCSS/BOPS) ModeledPrevious Work: System (SOFCSS/BOPS) Modeled

Assumptions:Assumptions:

• Pure methane

•Air humidity fixed at 65%
and 298 °K, 1 atm

• Cell temperature 1273°K
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Previous Work: BOPSPrevious Work: BOPS

PrePre--reforming modelreforming model: SMR and shift reactions – kinetic / equilibrium / 
geometry based

∫
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Previous Work: System (SOFCSS/BOPS) ResultsPrevious Work: System (SOFCSS/BOPS) Results
Simulation in the Simulation in the 

Synthesis/Design modeSynthesis/Design mode
Fixed cell power at different 

cell voltages 

• The model works and can be used for 
trade-off analysis or large-scale optimization

• The model gives coherent and interesting 
results

The parameters studied:

•Methane conversion during pre-reforming

• Steam to carbon ratio

• Cell pressure

• Fuel utilization
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• Better to work at a low steam to carbon ratio

• However, lower limit of the steam to carbon 
ratio exists because of carbon deposition

Previous Work:  System (SOFCSS/BOPS) ResultsPrevious Work:  System (SOFCSS/BOPS) Results

• At higher pressure, equipment cost decreases

• At higher pressure, system efficiency 
decreases
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Previous Work:  System (SOFCSS/BOPS) ResultsPrevious Work:  System (SOFCSS/BOPS) Results
Influence of fuel utilization
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Supersonic
Penetration
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Source: Mattingly et al, 1987

n System: Advanced Air-to-Air 
Fighter (PS-ECS-FLS-
VC/PAOS-AFS) –
Synthesis/design optimized 
with 553 degrees of 
freedom

Previous Work: Integrated System-level Synthesis / Design
Optimization - ILGO

n System: Fuel Cell Based Total 
Energy System (SS-FPS-EHPS)
– Synthesis/design optimized 
with 39 degrees of freedom

Fuel Processing
Sub-system

(FPS)

Electric
Heat Pump
Sub-system

(EHPS)

Stack Sub-system
(SS)

TESFPSE&

airQ&

EHPSE&

netE&

2Hn&

fueln&

EHPSQ& SSQ&

FPSQ&



PERC/UICCFC/BT/GTRI EMI/VT

R&D Approach:  Phase I TasksR&D Approach:  Phase I Tasks

• Planar SOFCSS model development, implementation and validation

• Parametric studies of best-practice control strategies

• Analysis of system stability and dynamics

• Refine models and couple with ILGO; determine optimal control 
strategies and analyze load profile variations on reliability, 
performance, and response 

• Characterization of the PES interface with the SOFCSS

• Load profile development

• BOPS model development, implementation and validation

• Integration of the PES, SOFCSS, and BOPS models

Phase I:

Phase II:
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R&D Approach

Collaboration with DOE Labs and SECA partners is  
critical to an effective Phase I !!!

• Integration within (i.e. UIC, Va. Tech and Ga. Tech)  
• Integration without (i.e. SECA teammates)


